CE      Civil Engineering Syllabus

Section 1: Engineering Mathematics

Linear  Algebra:  Matrix  algebra;  Systems  of  linear  equations;  Eigen  values  and  Eigen vectors.

Calculus:  Functions  of  single  variable;  Limit,  continuity  and  differentiability;  Mean  value theorems, local maxima and minima, Taylor and Maclaurin series; Evaluation  of  definite and indefinite integrals, application of definite integral to obtain area and volume; Partial derivatives; Total derivative; Gradient, Divergence and Curl, Vector identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and Green’s theorems.

Ordinary  Differential  Equation  (ODE):  First  order  (linear  and  non-linear)  equations;  higher order   linear   equations   with   constant   coefficients;   Euler-Cauchy   equations;   Laplace transform and its application in solving linear ODEs; initial and boundary value problems.

Partial Differential Equation (PDE): Fourier series; separation of variables; solutions of one- dimensional  diffusion  equation;  first  and  second  order  one-dimensional  wave  equation and two-dimensional Laplace equation.

Probability  and  Statistics:  Definitions  of  probability  and  sampling  theorems;  Conditional probability;  Discrete  Random  variables:  Poisson  and  Binomial  distributions;  Continuous random  variables:  normal  and  exponential  distributions;  Descriptive  statistics  –  Mean, median, mode and standard deviation; Hypothesis testing.

Numerical Methods: Accuracy and precision; error analysis. Numerical solutions of linear and   non-linear   algebraic   equations;   Least   square   approximation,   Newton’s   and Lagrange polynomials, numerical differentiation, Integration by trapezoidal and Simpson’s rule, single and multi-step methods for first order differential equations.

Section 2: Structural Engineering

Engineering  Mechanics:  System  of  forces,  free-body  diagrams,  equilibrium  equations; Internal forces in structures; Friction and its applications; Kinematics of point mass and rigid body; Centre of mass; Euler’s equations of motion; Impulse-momentum; Energy methods; Principles of virtual work.

Solid  Mechanics:  Bending  moment  and  shear  force  in  statically  determinate  beams; Simple  stress  and  strain  relationships;  Theories  of  failures;  Simple  bending  theory,  flexural and  shear  stresses,  shear  centre;  Uniform  torsion,  buckling  of  column,  combined  and direct bending stresses.

Structural Analysis: Statically determinate and indeterminate structures by force/ energy methods; Method of superposition; Analysis of trusses, arches, beams, cables and frames; Displacement  methods:  Slope  deflection  and  moment  distribution  methods;  Influence lines; Stiffness and flexibility methods of structural analysis.

Construction   Materials   and   Management:   Construction   Materials:   Structural   steel   – composition,  material  properties  and  behaviour;  Concrete  –  constituents,  mix  design, short-term  and  long-term  properties;  Bricks  and  mortar;  Timber;  Bitumen.  Construction Management: Types of construction projects; Tendering and construction contracts; Rate analysis  and  standard  specifications;  Cost  estimation;  Project  planning  and  network analysis – PERT and CPM.

Concrete Structures: Working stress, Limit state and Ultimate load design concepts; Design of beams, slabs, columns; Bond and development length; Prestressed concrete; Analysis of beam sections at transfer and service loads.

Steel  Structures:  Working  stress  and  Limit  state  design  concepts;  Design  of  tension  and compression members, beams and beam- columns, column bases; Connections – simple and  eccentric,  beam-column  connections,  plate  girders  and  trusses;  Plastic  analysis  of beams and frames.

 

Section 3: Geotechnical Engineering

Soil  Mechanics:  Origin  of  soils,  soil  structure  and  fabric;  Three-phase  system  and  phase relationships,  index  properties;  Unified  and  Indian  standard  soil  classification  system; Permeability – one dimensional flow, Darcy’s law; Seepage through soils – two-dimensional flow,  flow  nets,  uplift  pressure,  piping;  Principle  of  effective  stress,  capillarity,  seepage force  and  quicksand  condition;  Compaction  in  laboratory  and  field  conditions;  One- dimensional consolidation, time rate of consolidation; Mohr’s circle, stress paths, effective and total shear strength parameters, characteristics of clays and sand.

Foundation Engineering: Sub-surface investigations – scope, drilling bore holes, sampling, plate load test, standard penetration and cone penetration tests; Earth pressure theories – Rankine and Coulomb; Stability of slopes – finite and infinite slopes, method of slices and Bishop’s  method;  Stress  distribution  in  soils  –  Boussinesq’s  and  Westergaard’s  theories, pressure   bulbs;   Shallow   foundations   –   Terzaghi’s   and   Meyerhoff’s   bearing   capacity theories, effect of water table; Combined footing and raft foundation; Contact pressure; Settlement analysis in sands and clays; Deep foundations –  types of  piles, dynamic and static  formulae,  load  capacity  of  piles  in  sands  and  clays,  pile  load  test,  negative  skin friction.

Section 4: Water Resources Engineering

Fluid  Mechanics:  Properties  of  fluids,  fluid  statics;  Continuity,  momentum,  energy  and corresponding   equations;   Potential   flow,   applications   of   momentum   and   energy equations;   Laminar   and   turbulent   flow;   Flow   in   pipes,   pipe   networks;   Concept   of boundary layer and its growth.

Hydraulics:  Forces  on  immersed  bodies;  Flow  measurement  in  channels  and  pipes; Dimensional analysis and hydraulic similitude; Kinematics of flow, velocity triangles; Basics of  hydraulic  machines,  specific  speed  of  pumps  and  turbines;  Channel  Hydraulics  – Energy-depth  relationships,  specific  energy,  critical  flow,  slope  profile,  hydraulic  jump, uniform flow and gradually varied flow

Hydrology: Hydrologic cycle, precipitation, evaporation, evapo-transpiration, watershed, infiltration, unit hydrographs, hydrograph analysis, flood estimation and routing, reservoir capacity, reservoir and channel routing, surface run-off models, ground water hydrology – steady state well hydraulics and aquifers; Application of Darcy’s law.

Irrigation: Duty, delta, estimation of evapo-transpiration; Crop water requirements; Design of lined and unlined canals, head works, gravity dams and spillways; Design of weirs on permeable foundation; Types of irrigation systems, irrigation methods; Water logging and drainage; Canal regulatory works, cross-drainage structures, outlets and escapes.

Section 5: Environmental Engineering

Water and Waste Water: Quality standards, basic unit processes and operations for water treatment. Drinking  water  standards, water  requirements, basic unit operations and unit processes  for  surface  water  treatment,  distribution  of  water.  Sewage  and  sewerage treatment,  quantity  and  characteristics  of  wastewater.  Primary,  secondary  and  tertiary treatment of wastewater, effluent discharge standards. Domestic wastewater treatment, quantity  of  characteristics  of  domestic  wastewater,  primary  and  secondary  treatment. Unit operations and unit processes of domestic wastewater, sludge disposal.

Air Pollution: Types of pollutants, their sources and impacts, air pollution meteorology, air pollution control, air quality standards and limits.

Municipal Solid Wastes: Characteristics, generation, collection and transportation of solid wastes,   engineered   systems   for   solid   waste   management   (reuse/   recycle,   energy recovery, treatment and disposal).

Noise  Pollution:  Impacts  of  noise,  permissible  limits  of  noise  pollution,  measurement  of noise and control of noise pollution.

Section 6: Transportation Engineering

Transportation  Infrastructure:  Highway  alignment  and  engineering  surveys;  Geometric design  of  highways  –  cross-sectional  elements,  sight  distances,  horizontal  and  vertical alignments;  Geometric  design  of  railway  track;  Airport  runway  length,  taxiway  and  exit taxiway design.

Highway  Pavements:  Highway  materials  –  desirable  properties  and  quality  control  tests; Design of bituminous paving mixes; Design factors for flexible and rigid pavements; Design of  flexible  pavement  using  IRC:  37-2012;  Design  of  rigid  pavements  using  IRC:  58-2011; Distresses in concrete pavements.

Traffic Engineering: Traffic studies on flow, speed, travel time – delay and O-D study, PCU,

peak hour factor, parking study, accident study and analysis, statistical analysis of traffic data;    Microscopic    and    macroscopic    parameters    of    traffic    flow,    fundamental relationships; Control  devices, signal  design by  Webster’s method; Types  of  intersections and channelization; Highway capacity and level of service of rural highways and urban roads.

Section 7: Geomatics Engineering

Principles  of  surveying;  Errors  and  their  adjustment;  Maps  –  scale,  coordinate  system; Distance and angle measurement – Levelling and trigonometric levelling; Traversing and triangulation survey; Total station; Horizontal and vertical curves.

Photogrammetry  –  scale,  flying  height;  Remote  sensing  –  basics,  platform  and  sensors, visual   image   interpretation;   Basics   of   Geographical   information   system   (GIS)   and Geographical Positioning system (GPS).